Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.136
Filtrar
1.
FASEB J ; 38(8): e23619, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38661031

RESUMO

Exosomes, which are small membrane-encapsulated particles derived from all cell types, are emerging as important mechanisms for intercellular communication. In addition, exosomes are currently envisioned as potential carriers for the delivery of drugs to target tissues. The natural population of exosomes is very variable due to the limited amount of cargo components present in these small vesicles. Consequently, common components of exosomes may play a role in their function. We have proposed that membrane phospholipids could be a common denominator in the effect of exosomes on cellular functions. In this regard, we have previously shown that liposomes made of phosphatidylcholine (PC) or phosphatidylserine (PS) induced a robust alteration of macrophage (Mϕ) gene expression. We herewith report that these two phospholipids modulate gene expression in Mϕs by different mechanisms. PS alters cellular responses by the interaction with surface receptors, particularly CD36. In contrast, PC is captured by a receptor-independent process and likely triggers an activity within endocytic vesicles. Despite this difference in the capture mechanisms, both lipids mounted similar gene expression responses. This investigation suggests that multiple mechanisms mediated by membrane phospholipids could be participating in the alteration of cellular functions by exosomes.


Assuntos
Exossomos , Macrófagos , Fosfatidilserinas , Macrófagos/metabolismo , Animais , Camundongos , Fosfatidilserinas/metabolismo , Exossomos/metabolismo , Fosfatidilcolinas/metabolismo , Inflamação/metabolismo , Fosfolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Antígenos CD36/metabolismo , Antígenos CD36/genética , Lipossomos
2.
Metabolism ; 155: 155905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548128

RESUMO

CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.


Assuntos
Autofagia , Antígenos CD36 , Progressão da Doença , Metabolismo dos Lipídeos , Neoplasias , Humanos , Antígenos CD36/metabolismo , Antígenos CD36/fisiologia , Autofagia/fisiologia , Metabolismo dos Lipídeos/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais
3.
Environ Toxicol ; 39(6): 3400-3409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450882

RESUMO

Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3ßHSD1, 17ßHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.


Assuntos
Antígenos CD36 , PPAR gama , Trofoblastos , Humanos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Linhagem Celular , Transdução de Sinais/efeitos dos fármacos , Feminino
4.
Biochem Biophys Res Commun ; 707: 149781, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38492244

RESUMO

BACKGROUND & AIMS: CD36, a membrane protein widely present in various tissues, is crucial role in regulating energy metabolism. The rise of HCC as a notable outcome of NAFLD is becoming more apparent. Patients with hereditary CD36 deficiency are at increased risk of NAFLD. However, the impact of CD36 deficiency on NAFLD-HCC remains unclear. METHODS: Global CD36 knockout mice (CD36KO) and wild type mice (WT) were induced to establish NAFLD-HCC model by N-nitrosodiethylamine (DEN) plus high fat diet (HFD). Transcriptomics was employed to examine genes that were expressed differentially. RESULTS: Compared to WT mice, CD36KO mice showed more severe HFD-induced liver issues and increased tumor malignancy. The MEK1/2-ERK1/2 pathway activation was detected in the liver tissues of CD36KO mice using RNA sequencing and Western blot analysis. CONCLUSION: Systemic loss of CD36 leaded to the advancement of NAFLD to HCC by causing lipid disorders and metabolic inflammation, a process that involves the activation of MAPK signaling pathway. We found that CD36 contributes significantly to the maintenance of metabolic homeostasis in NAFLD-HCC.


Assuntos
Transtornos Plaquetários , Carcinoma Hepatocelular , Doenças Genéticas Inatas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Transdução de Sinais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Protein J ; 43(2): 243-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431537

RESUMO

S100A8 and S100A9 belong to the calcium-binding, damage associated molecular pattern (DAMP) proteins shown to aggravate the pathogenesis of rheumatoid arthritis (RA) through their interaction with the TLR4, RAGE and CD36 receptors. S100A8 and S100A9 proteins tend to exist in monomeric, homo and heterodimeric forms, which have been implicated in the pathogenesis of RA, via interacting with Pattern Recognition receptors (PRRs). The study aims to assess the influence of changes in the structure and biological assembly of S100A8 and S100A9 proteins as well as their interaction with significant receptors in RA through computational methods and surface plasmon resonance (SPR) analysis. Molecular docking analysis revealed that the S100A9 homodimer and S100A8/A9 heterodimer showed higher binding affinity towards the target receptors. Most S100 proteins showed good binding affinity towards TLR4 compared to other receptors. Based on the 50 ns MD simulations, TLR4, RAGE, and CD36 formed stable complexes with the monomeric and dimeric forms of S100A8 and S100A9 proteins. However, SPR analysis showed that the S100A8/A9 heterodimers formed stable complexes and exhibited high binding affinity towards the receptors. SPR data also indicated that TLR4 and its interactions with S100A8/A9 proteins may play a primary role in the pathogenesis of RA, with additional contributions from CD36 and RAGE interactions. Subsequent in vitro and in vivo investigations are warranted to corroborate the involvement of S100A8/A9 and the expression of TLR4, RAGE, and CD36 in the pathophysiology of RA.


Assuntos
Antígenos CD36 , Calgranulina A , Calgranulina B , Simulação de Acoplamento Molecular , Receptor para Produtos Finais de Glicação Avançada , Receptor 4 Toll-Like , Calgranulina B/química , Calgranulina B/metabolismo , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo , Calgranulina A/química , Calgranulina A/metabolismo , Calgranulina A/genética , Humanos , Antígenos CD36/química , Antígenos CD36/metabolismo , Antígenos CD36/genética , Receptor para Produtos Finais de Glicação Avançada/química , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular , Ressonância de Plasmônio de Superfície , Multimerização Proteica , Artrite Reumatoide/metabolismo
6.
Lipids Health Dis ; 23(1): 76, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468335

RESUMO

BACKGROUND: Atherosclerosis (AS) is a persistent inflammatory condition triggered and exacerbated by several factors including lipid accumulation, endothelial dysfunction and macrophages infiltration. Nobiletin (NOB) has been reported to alleviate atherosclerosis; however, the underlying mechanism remains incompletely understood. METHODS: This study involved comprehensive bioinformatic analysis, including multidatabase target prediction; GO and KEGG enrichment analyses for function and pathway exploration; DeepSite and AutoDock for drug binding site prediction; and CIBERSORT for immune cell involvement. In addition, target intervention was verified via cell scratch assays, oil red O staining, ELISA, flow cytometry, qRT‒PCR and Western blotting. In addition, by establishing a mouse model of AS, it was demonstrated that NOB attenuated lipid accumulation and the extent of atherosclerotic lesions. RESULTS: (1) Altogether, 141 potentially targetable genes were identified through which NOB could intervene in atherosclerosis. (2) Lipid and atherosclerosis, fluid shear stress and atherosclerosis may be the dominant pathways and potential mechanisms. (3) ALB, AKT1, CASP3 and 7 other genes were identified as the top 10 target genes. (4) Six genes, including PPARG, MMP9, SRC and 3 other genes, were related to the M0 fraction. (5) CD36 and PPARG were upregulated in atherosclerosis samples compared to the normal control. (6) By inhibiting lipid uptake in RAW264.7 cells, NOB prevents the formation of foam cell. (7) In RAW264.7 cells, the inhibitory effect of oxidized low-density lipoprotein on foam cells formation and lipid accumulation was closely associated with the PPARG signaling pathway. (8) In vivo validation showed that NOB significantly attenuated intra-arterial lipid accumulation and macrophage infiltration and reduced CD36 expression. CONCLUSIONS: Nobiletin alleviates atherosclerosis by inhibiting lipid uptake via the PPARG/CD36 pathway.


Assuntos
Aterosclerose , Flavonas , PPAR gama , Animais , Camundongos , PPAR gama/genética , PPAR gama/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos , Células Espumosas , Lipoproteínas LDL/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo
7.
Br J Oral Maxillofac Surg ; 62(3): 290-298, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461076

RESUMO

Ameloblastoma (AM) is characterised by local aggressiveness and bone resorption. To our knowledge, the proteomic profile of bone adjacent to AM has not previously been explored. We therefore looked at the differential proteins in cancellous bone (CB) adjacent to AM and normal CB from the mandible. CB proteins were extracted, purified, quantified, and analysed by liquid chromatography-mass spectrometry (LC-MS) using samples from five patients with AM. These proteins were further investigated using gene ontology for additional functional annotation and enrichment. Proteins that met the screening requirements of expression difference ploidy > 1.5-fold (upregulation and downregulation) and p < 0.05 were subsequently deemed differential proteins. Immunohistochemical staining was performed to confirm the above findings. Compared with normal mandibular CB, 151 differential proteins were identified in CB adjacent to the mandibular AM. These were mainly linked to cellular catabolic processes, lipid metabolism, and fatty acids (FA) metabolism. LC-MS and immunohistochemistry showed that CD36 was one of the notably decreased proteins in CB bordering the AM compared with normal mandibular CB (p = 0.0066 and p = 0.0095, respectively). CD36 expression in CB correlates with bone remodelling in AM, making CD36 a viable target for therapeutic approaches.


Assuntos
Ameloblastoma , Remodelação Óssea , Antígenos CD36 , Proteômica , Humanos , Ameloblastoma/metabolismo , Ameloblastoma/patologia , Remodelação Óssea/fisiologia , Antígenos CD36/metabolismo , Antígenos CD36/análise , Neoplasias Mandibulares/metabolismo , Neoplasias Mandibulares/patologia , Cromatografia Líquida , Osso Esponjoso/metabolismo , Metabolismo dos Lipídeos/fisiologia , Adulto , Feminino , Masculino , Mandíbula/metabolismo , Espectrometria de Massas , Ácidos Graxos/metabolismo , Pessoa de Meia-Idade , Proteoma/análise
8.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351345

RESUMO

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Assuntos
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliais , Neoplasias Hepáticas , Periostina , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
9.
Environ Res ; 249: 118402, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309560

RESUMO

Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.


Assuntos
Antígenos CD36 , Ácidos Graxos , Metabolismo dos Lipídeos , Microcistinas , Transdução de Sinais , Humanos , Células Hep G2 , Antígenos CD36/metabolismo , Antígenos CD36/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Microcistinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Ácidos Graxos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos
10.
Molecules ; 29(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276607

RESUMO

It has been found that the development of some cancers can be attributed to obesity, which is associated with the excessive intake of lipids. Cancer cells undergo metabolic reprogramming, shifting from utilizing glucose to fatty acids (FAs) for energy. CD36, a lipid transporter, is highly expressed in certain kinds of cancer cells. High expressions of CD36 in tumor cells triggers FA uptake and lipid accumulation, promoting rapid tumor growth and initiating metastasis. Meanwhile, immune cells in the tumor microenvironment overexpress CD36 and undergo metabolic reprogramming. CD36-mediated FA uptake leads to lipid accumulation and has immunosuppressive effects. This paper reviews the types of FAs associated with cancer, high expressions of CD36 that promote cancer development and progression, effects of CD36 on different immune cells in the tumor microenvironment, and the current status of CD36 as a therapeutic target for the treatment of tumors with high CD36 expression.


Assuntos
Neoplasias , Humanos , Ácidos Graxos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Obesidade , Transporte Biológico , Microambiente Tumoral
11.
Life Sci ; 339: 122442, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244916

RESUMO

CD36 is a transmembrane glycoprotein, located on surface of numerous cell types. This review is aimed to explore regulatory role of CD36 in hematopoiesis beyond fatty acid uptake. CD36 acts as a pattern recognition receptor, regulates cellular fatty acid homeostasis, and negatively monitors angiogenesis. CD36 also mediates free fatty acid transportation to hematopoietic stem cells in response to infections. During normal physiology and pathophysiology, CD36 significantly participates in the activation and metabolic needs of platelets, macrophages, monocytes, T cells, B cells, and dendritic cells. CD36 has shown a unique relationship with Plasmodium falciparum-infected erythrocytes (PfIEs) as a beneficiary for both parasite and host. CD36 actively participates in pathogenesis of various hematological cancers as a significant prognostic biomarker including AML, HL, and NHL. CD36-targeting antibodies, CD36 antagonists (small molecules), and CD36 expression inhibitors/modulators are used to target CD36, depicting its therapeutic potential. Many preclinical studies or clinical trials were performed to assess CD36 as a therapeutic target; some are still under investigation. This review reflects the role of CD36 in hematopoiesis which requires more consideration in future research.


Assuntos
Antígenos CD36 , Ácidos Graxos , Ácidos Graxos/metabolismo , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Plasmodium falciparum , Hematopoese , Eritrócitos
12.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37702564

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efeitos adversos , Ciclosporina/metabolismo , Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo
13.
Mol Cell Endocrinol ; 581: 112112, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000461

RESUMO

High amount of fat in the pancreas is linked to poor functioning of ß-cells and raises the risk of type 2 diabetes. Here we report the putative role of a circulatory glycoprotein Fetuin-A, a known obesity marker, in promoting lipid accumulation in ß-cells and its association with Fatty acid translocase/CD36 for lipid storage culminate in ß-cell dysfunction. Additionally, this work reveals regulation of CD36 via Nrf2, a key regulator of oxidative stress, and reduction of lipid accumulation by suppression of Nrf2 that restores ß-cell function. Palmitate (0.50 mM) and Fetuin-A (100 µg/mL) exposure showed high levels of intracellular lipid in MIN6 (mouse insulinoma cells) with a concomitant decrease in insulin secretion. This also increased the expression of important lipogenic factors, like CD36, PGC1α, PPARγ, and SREBP1. Flow cytometry analysis of CD36 membrane localization has been corroborated with an increased accumulation of lipids as indicated by Oil-Red-O staining. Immunoblotting and immunofluorescence of Nrf2 indicated its high expression in palmitate-fetuin-A incubation and translocation in the nucleus. Suppression of Nrf2 by siRNA showed a reduced expression of lipogenic genes, ablation of lipid droplets, decrease in the number of apoptotic cells, and restoration of insulin secretion with a corresponding increase of Pdx1, BETA2, and Ins1 gene expression. Our study thus suggested an important aspect of lipid accumulation in the pancreatic ß-cells contributing to ß-cell dysfunction and demonstrated the role of Fetuin-A in CD36 expression, with a possible way of restoring ß-cell function by targeting Nrf2.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinoma , Neoplasias Pancreáticas , Animais , Camundongos , alfa-2-Glicoproteína-HS/metabolismo , Antígenos CD36/metabolismo , Insulina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Palmitatos/farmacologia
14.
Immunol Lett ; 265: 7-15, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122906

RESUMO

The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.


Assuntos
Antígenos CD36 , Neoplasias , Humanos , Antígenos CD36/metabolismo , Neoplasias/terapia , Proteínas de Membrana/metabolismo , Lipoproteínas LDL/metabolismo
15.
J Biol Chem ; 299(12): 105463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977221

RESUMO

Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.


Assuntos
Bactérias , Crustáceos , Exossomos , Ferroptose , Ferro , Sistema Enzimático do Citocromo P-450/metabolismo , Exossomos/metabolismo , Ferroptose/fisiologia , Ferro/metabolismo , Peroxidação de Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Oxirredutases/metabolismo , Proteínas de Membrana/metabolismo , Antígenos CD36/metabolismo , RNA-Seq , Compostos Ferrosos/metabolismo , Crustáceos/citologia , Crustáceos/genética , Crustáceos/metabolismo , Crustáceos/microbiologia , Ácidos Hidroxieicosatetraenoicos , Ácido Araquidônico/metabolismo , Ácidos Graxos/metabolismo , Bactérias/metabolismo
16.
Biomed Pharmacother ; 168: 115834, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931517

RESUMO

CD36, a multifunctional glycoprotein, has been shown to play critical roles in tumor initiation, progression, metastasis, immune response, and drug resistance. CD36 serves as a receptor for a wide range of ligands, including lipid-related ligands (e.g., long-chain fatty acid (LCFA), oxidized low-density lipoprotein (oxLDL), and oxidized phospholipids), as well as protein-related ligands (e.g., thrombospondins, amyloid proteins, collagens I and IV). CD36 is overexpressed in various cancers and may act as an independent prognostic marker. While it was initially identified as a mediator of anti-angiogenesis through its interaction with thrombospondin-1 (TSP1), recent research has highlighted its role in promoting tumor growth, metastasis, drug resistance, and immune suppression. The varied impact of CD36 on cancer is likely ligand-dependent. Therefore, we focus specifically on the ligand-dependent role of CD36 in cancer to provide a critical review of recent advances, perspectives, and challenges.


Assuntos
Neoplasias , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Antígenos CD36/metabolismo , Resistência a Medicamentos , Imunidade , Lipoproteínas LDL/metabolismo
17.
Dev Cell ; 58(21): 2326-2337.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37863040

RESUMO

High-density lipoprotein (HDL) metabolism is regulated by complex interplay between the scavenger receptor group B type 1 (SR-BI) and multiple signaling molecules in the liver. Here, we show that lipocalin-2 (Lcn2) is a key regulator of hepatic SR-BI, HDL metabolism, and atherosclerosis. Overexpression of human Lcn2 in hepatocytes attenuates the development of atherosclerosis via SR-BI in western-diet-fed Ldlr-/- mice, whereas hepatocyte-specific ablation of Lcn2 has the opposite effect. Mechanistically, hepatocyte Lcn2 improves HDL metabolism and alleviates atherogenesis by blocking Nedd4-1-mediated SR-BI ubiquitination at K500 and K508. The Lcn2-improved HDL metabolism is abolished in mice with hepatocyte-specific Nedd4-1 or SR-BI deletion and in SR-BI (K500A/K508A) mutation mice. This study identifies a regulatory axis from Lcn2 to HDL via blocking Nedd4-1-mediated SR-BI ubiquitination and demonstrates that hepatocyte Lcn2 may be a promising target to improve HDL metabolism to treat atherosclerotic cardiovascular diseases.


Assuntos
Aterosclerose , Lipoproteínas HDL , Camundongos , Humanos , Animais , Lipoproteínas HDL/metabolismo , Lipocalina-2/genética , Lipocalina-2/metabolismo , Hepatócitos/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Fígado/metabolismo , Antígenos CD36/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1496-1505, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528662

RESUMO

In atherosclerosis, macrophage-derived foam cell formation is considered to be a hallmark of the pathological process; this occurs via the uptake of modified lipoproteins. In the present study, we aim to determine the role of transaldolase in foam cell formation and atherogenesis and reveal the mechanisms underlying its role. Bone marrow-derived macrophages (BMDMs) isolated from mice successfully form foam cells after treatment with oxidized low-density lipoprotein (80 µg/mL). Elevated transaldolase levels in the foam cell model are assessed by quantitative polymerase chain reaction and western blot analysis. Transaldolase overexpression and knockdown in BMDMs are achieved via plasmid transfection and small interfering RNA technology, respectively. We find that transaldolase overexpression effectively attenuates, whereas transaldolase knockdown accelerates, macrophage-derived foam cell formation through the inhibition or activation of cholesterol uptake mediated by the scavenger receptor cluster of differentiation 36 (CD36) in a p38 mitogen-activated protein kinase (MAPK) signaling-dependent manner. Transaldolase-mediated glutathione (GSH) homeostasis is identified as the upstream regulator of p38 MAPK-mediated CD36-dependent cholesterol uptake in BMDMs. Transaldolase upregulates GSH production, thereby suppressing p38 activity and reducing the CD36 level, ultimately preventing foam cell formation and atherosclerosis. Thus, our findings indicate that the transaldolase-GSH-p38-CD36 axis may represent a promising therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Camundongos , Animais , Transaldolase/metabolismo , Transaldolase/farmacologia , Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , Glutationa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Colesterol/metabolismo
19.
Exp Anim ; 72(4): 535-545, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407484

RESUMO

CD36 (also known as scavenger receptor B2) is a multifunctional receptor that mediates lipid uptake, advanced oxidation protein products, and immunological recognition, and has roles in lipid accumulation, apoptosis, as well as in metastatic colonization in cancer. CD36 is involved in tumor immunity, metastatic invasion, and therapy resistance through various molecular mechanisms. Targeting CD36 has emerged as an effective strategy for tumor immunotherapy. In this study, we have successfully generated a novel hCD36 mouse (Unless otherwise stated, hCD36 mouse below refer to homozygous hCD36 mouse) strain where the sequences encoding the extracellular domains of the mouse Cd36 gene were replaced with the corresponding human sequences. The results showed that the hCD36 mice only expressed human CD36, and the proportion of each lymphocyte was not significantly changed compared with wild-type mice. Furthermore, CD36 monoclonal antibody could significantly inhibit tumor growth after treatment. Therefore, the hCD36 mouse represent a validated preclinical mouse model for the evaluation of tumor immunotherapy targeting CD36.


Assuntos
Antígenos CD36 , Neoplasias , Camundongos , Humanos , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Receptores Depuradores/metabolismo , Neoplasias/genética , Neoplasias/terapia , Lipídeos
20.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166800, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423141

RESUMO

BACKGROUND & AIMS: Fatty acid translocase CD36 (CD36/FAT) is a widely expressed membrane protein with multiple immuno-metabolic functions. Genetic CD36 deficiency is associated with increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD) in patients. Liver fibrosis severity mainly affects the prognosis in patients with MAFLD, but the role of hepatocyte CD36 in liver fibrosis of MAFLD remains unclear. METHODS: A high-fat high-cholesterol diet and a high-fat diet with high-fructose drinking water were used to induce nonalcoholic steatohepatitis (NASH) in hepatocyte-specific CD36 knockout (CD36LKO) and CD36flox/flox (LWT) mice. Human hepG2 cell line was used to investigate the role of CD36 in regulating Notch pathway in vitro. RESULTS: Compared to LWT mice, CD36LKO mice were susceptible to NASH diet-induced liver injury and fibrosis. The analysis of RNA-sequencing data revealed that Notch pathway was activated in CD36LKO mice. LY3039478, an inhibitor of γ-secretase, inhibited Notch1 protein S3 cleavage and Notch1 intracellular domain (N1ICD) production, alleviating liver injury and fibrosis in CD36LKO mice livers. Likewise, both LY3039478 and knockdown of Notch1 inhibited the CD36KO-induced increase of N1ICD production, causing the decrease of fibrogenic markers in CD36KO HepG2 cells. Mechanistically, CD36 formed a complex with Notch1 and γ-secretase in lipid rafts, and hence CD36 anchored Notch1 in lipid rafts domains and blocked Notch1/γ-secretase interaction, inhibiting γ-secretase-mediated cleavage of Notch1 and the production of N1ICD. CONCLUSIONS: Hepatocyte CD36 plays a key role in protecting mice from diet-induced liver injury and fibrosis, which may provide a potential therapeutic strategy for preventing liver fibrogenesis in MAFLD.


Assuntos
Antígenos CD36 , Dieta , Hepatócitos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Fragmentos de Peptídeos , Receptor Notch1 , Animais , Camundongos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Antígenos CD36/deficiência , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta/efeitos adversos , Deleção de Genes , Células Hep G2 , Hepatócitos/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/prevenção & controle , Microdomínios da Membrana , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fenótipo , Receptor Notch1/química , Receptor Notch1/metabolismo , Transdução de Sinais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA